Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(1): e0221851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31961897

RESUMO

BACKGROUND: There is currently no effective treatment for promoting regeneration of injured nerves in patients who have sustained injury to the central nervous system such as spinal cord injury. Chondroitinase ABC is an enzyme, which promotes neurite outgrowth and regeneration. It has shown considerable promise as a therapy for these conditions. The aim of the study is to determine if targeting chondroitinase ABC expression to the neuronal axon can further enhance its ability to promote axon outgrowth. Long-distance axon regeneration has not yet been achieved, and would be a significant step in attaining functional recovery following spinal cord injury. METHODOLOGY/PRINCIPAL FINDINGS: To investigate this, neuronal cultures were transfected with constructs encoding axon-targeted chondroitinase, non-targeted chondroitinase or GFP, and the effects on neuron outgrowth and sprouting determined on substrates either permissive or inhibitory to neuron regeneration. The mechanisms underlying the observed effects were also explored. Targeting chondroitinase to the neuronal axon markedly enhances its ability to promote neurite outgrowth. The increase in neurite length is associated with an upregulation of ß-integrin staining at the axonal cell surface. Staining for phosphofocal adhesion kinase, is also increased, indicating that the ß-integrins are in an activated state. Expression of chondroitinase within the neurons also resulted in a decrease in expression of PTEN and RhoA, molecules which present a block to neurite outgrowth, thus identifying two of the pathways by which ChABC promotes neurite outgrowth. CONCLUSIONS / SIGNIFICANCE: The novel finding that targeting ChABC to the axon significantly enhances its ability to promote neurite extension, suggests that this may be an effective way of promoting long-distance axon regeneration following spinal cord injury. It could also potentially improve its efficacy in the treatment of other pathologies, where it has been shown to promote recovery, such as myocardial infarction, stroke and Parkinson's disease.


Assuntos
Condroitina ABC Liase/genética , Regeneração Nervosa/genética , Crescimento Neuronal/genética , Traumatismos da Medula Espinal/genética , Animais , Axônios/metabolismo , Condroitina ABC Liase/antagonistas & inibidores , Regulação da Expressão Gênica/genética , Humanos , Neuritos/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , PTEN Fosfo-Hidrolase/genética , Recuperação de Função Fisiológica/genética , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Proteína rhoA de Ligação ao GTP/genética
2.
Int J Biol Macromol ; 95: 80-86, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27769932

RESUMO

An extracellular chondroitinase ABC (ChSase ABC, EC 4.2.2.4) produced by cultivating Acinetobacter sp. C26, was purified to homogeneity from the supernatant by ammonium sulfate fractionation, Q-Sepharose Fast Flow and Sephadex G-100 chromatography. The 76kDa enzyme was purified 48.09-fold to homogeneity with specific activity of 348.64U/mg, Using the chondroitin sulfate A (CS-A) as substrate, the maximal reaction rate (Vmax) and Michaelis-Menten constant (Km) of ChSase ABC were found to be 10.471µmol/min/ml and 0.105mg/ml, respectively. The enzyme showed the highest activity at the optimal conditions of pH 6.0 and 42 ∘C, respectively. This enzyme was stable at pH 5-10, 5-9 and 5-7 at 4°C, 37°C and 42°C, respectively. Investigation about thermal stability of ChSase ABC displayed that it was stable at 37°C. ChSase ABC activity was increased in presence of Na+, K+, Mn2+, 1,10-phenanthrolin and strongly inhibited by Cu2+, Hg2+, Al3+and SDS. These properties suggested that ChSase ABC from Acinetobacter sp. C26 bring promising prospects in medical and industry applications.


Assuntos
Acinetobacter/enzimologia , Condroitina ABC Liase/isolamento & purificação , Condroitina ABC Liase/metabolismo , Sequência de Aminoácidos , Sulfato de Amônio/metabolismo , Condroitina ABC Liase/antagonistas & inibidores , Condroitina ABC Liase/química , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Metais/farmacologia , Tensoativos/farmacologia , Temperatura
3.
Mar Drugs ; 14(10)2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27775651

RESUMO

Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C2C12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Sulfatos de Condroitina/farmacologia , Mioblastos/efeitos dos fármacos , Animais , Fusão Celular , Linhagem Celular , Condroitina ABC Liase/antagonistas & inibidores , Sulfatos de Condroitina/química , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...